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Abstract— Lane detection is one of the most important func-
tions for autonomous driving. In recent years, deep learning-
based lane detection networks with RGB camera images have
shown promising performance. However, camera-based meth-
ods are inherently vulnerable to adverse lighting conditions
such as poor or dazzling lighting. Unlike camera, LiDAR
sensor is robust to the lighting conditions. In this work, we
propose a novel two-stage LiDAR lane detection network with
row-wise detection approach. The first-stage network produces
lane proposals through a global feature correlator backbone
and a row-wise detection head. Meanwhile, the second-stage
network refines the feature map of the first-stage network via
attention-based mechanism between the local features around
the lane proposals, and outputs a set of new lane proposals.
Experimental results on the K-Lane dataset show that the
proposed network advances the state-of-the-art in terms of F1-
score with 30% less GFLOPs. In addition, the second-stage
network is found to be especially robust to lane occlusions,
thus, demonstrating the robustness of the proposed network
for driving in crowded environments.

I. INTRODUCTION

To be able to navigate from a point to another, an au-
tonomous driving agent needs to plan a safe and efficient
route according to the environmental conditions. Therefore,
the ability of perceiving the environment through raw sensor
measurements is crucial for the autonomous driving. One
of the perception tasks for autonomous driving is the lane
detection task, where the autonomous driving agent needs to
detect the location of lane lines on the roads.

Extensive studies have been conducted on the lane de-
tection task, particularly with the RGB camera sensors. In
the earlier days, rule-based and heuristic systems have been
developed to provide lane detection capability in limited
predefined environments [1][2][3]. Recently, data-driven ap-
proaches become popular owing to the advancements of
deep learning. Various neural networks for camera-based
lane detection have been developed [4][5][6], with promising
accuracy in most of driving conditions.

However, RGB camera has an inherent weakness towards
harsh lighting conditions such as low or dazzling light. This
is evident in the widely-used CULane benchmark [7], where
the performance degradation of various camera-based lane
detection networks occurs in the dazzling light and dark. As
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an autonomous driving agent needs to be robust in various
driving conditions, the vulnerability of the existing camera-
based lane detection methods towards adverse lighting con-
ditions need to be resolved.

One possible solution to the problem is to use Light
Detection and Ranging (LiDAR) sensor. Since the LiDAR
sensor emits infrared signals, which is hardly interfered by
the visible light, adverse lighting conditions do not affect
its measurement capability significantly. Moreover, unlike
camera images, the LiDAR point cloud does not require a
bird’s eye view (BEV) projection for motion planning, which
often causes lane line distortions.

Despite the several advantage of the LiDAR sensor, only
a handful of studies have proposed deep learning-based
LiDAR lane detection methods. This is largely due to the
absence of publicly-available LiDAR lane detection datasets.
As seen in the deep camera-based lane detection field, the
majority of the lane detection networks are developed after
the publication of open lane detection datasets such as [7][8].

Recently, [9] opens a large-scale LiDAR lane detection
dataset, K-Lane, to the public, along with a segmentation-
based LiDAR lane detection network (LLDN) baseline. The
baseline consists of a projection network, a global feature
correlator (GFC), and a segmentation head, which generates
a feature map in the BEV format, extracting features via
global correlation, and predicting lanes per grid, respectively.
While a segmentation-based lane detection network is ca-
pable of producing lane detection of various shapes, it is
computationally expensive due to the need of processing
each grid of the final feature map through shared multi-layer
perceptron (MLP).

In this work, we propose a novel LiDAR lane detec-
tion network that is computationally efficient and especially
effective to the severe occlusion cases. We set the lane
detection problem as a row-wise prediction task instead of
a semantic segmentation task, so that the detection head of
the network performs row-wise MLP operations instead of
grid-wise MLP operations. The row-wise formulation leads
to a significantly less computational cost than the prior work
[9], with about 30% less GFLOPs.

Furthermore, we design an additional second-stage net-
work that refines the output feature map of the first-stage
network via correlation of features around the lane pro-
posals. The correlation process is implemented with the
dot-product attention mechanism, which allows the network
to exchange information between the features of the lane
proposals globally. As the lane lines often have some degree
of regularity in terms of shapes and distances between each



other, such global correlation process should be advanta-
geous, for example, in detecting lane lines that are occluded
by neighboring vehicles. The row-wise two-stage approach
enables our proposed network to achieve the state-of-the-art
(SOTA) performance with less computational cost compared
to the existing baselines.

In a summary, our contributions are as follows:
• We propose a new technique in LiDAR lane detection

through row-wise lane prediction. This technique is
more computationally efficient compared to existing
segmentation-based LiDAR lane detection techniques.

• We design a two-stage LiDAR lane detection network
that first predicts lane proposals, and then refines the
first-stage feature map via attention-based mechanism
between the lane proposals. The refined feature map is
then used to predict the final lane detection proposals.

• We demonstrate the excellent performance of the pro-
posed network; the proposed network achieves SOTA
performance in K-Lane with an overall F1-score of
82.74% reducing the GFLOPs by about 30%. While
the proposed network achieves a slight overall F1-
score improvement (i.e., 0.62%) over the prior SOTA
network, the proposed network largely improves the F1-
score (i.e., 3.24%) for the severe occlusion cases. Thus,
the proposed network enables the robust lane detection
required for safe autonomous driving in congested traf-
fics where performance degradation has previously been
significant.

The rest of this paper is organized as follows: Section II
introduces existing works related to our study, Section III
details our proposed LiDAR lane detection network, Section
IV discusses the experimental results on the K-Lane dataset,
and Section V draws conclusion this study.

II. RELATED WORKS

In this section, we discuss existing works that are related to
our study. We start with a general review of the more matured
camera-based lane detection. Then we discuss further on
the row-wise lane detection methods. Finally, we cover the
existing LiDAR lane detection methods.

A. Camera-based Lane Detection

Traditional camera-based lane detection methods heavily
rely on rule-based systems that require various predefined
variables such as intensity thresholding [1][2][3]. As the
deep learning field becomes more matured, various camera
lane detection networks emerge, with promising accuracy in
various driving conditions. Most deep learning-based camera
lane detection networks utilize convolutional neural network
(CNN) as their backbone feature extractor, and a task-specific
detection head.

In [10], the detection head is designed to perform anchor-
based lane predictions and coordinate offset predictions. In
[4], the detection head produce two affinity-field maps that
represent the locations of lane lines. In [6], the detection
head is conditioned to predict row-wise lane proposals before
being further processed by a post-processing algorithm.

Compared to other approaches, row-wise lane detection often
perform faster while maintaining good accuracy. As such, we
design our LiDAR lane detection network with a row-wise
paradigm.

B. Row-wise Lane Detection

Row-wise lane detection is proposed by [11], in which
lane lines are detected through predicting the lane location
probability of each row. That is, for each row, the location
of the lane line is determined as the column of which the
lane probability is the highest. Unlike segmentation-based
lane detection, row-wise lane detection is based on geometric
prior which picks only one location per each lane, so that this
method may robust to false alarm. Furthermore, [4] modify
the argmax operation into taking the sums of each index of
the column weighted by its lane probability to enable the
gradients to flow through the lane structure loss.

C. LiDAR Lane Detection

In the early LiDAR lane detection methods, lane lines
are detected through an intensity thresholding operation
with additional heuristics. These methods often incorporate
additional algorithms such as Kalman Filter [12], polar
coordinates operation [13], or clustering with DBSCAN [14].
However, heuristic methods are not adaptive towards diverse
driving conditions due to the need for predefining numerous
thershold variables.

More recently, several studies are starting to incorporate
deep learning to their LiDAR lane detection methods. In
[15], the front view camera images are combined with the
2D BEV images from the LiDAR point cloud to improve
the lane detection performance. In [16], a CNN backbone
is utilized to detect the ego lane lines in the highways. In
[9], a segmentation-based neural network with global feature
correlator backbone is used to perform LiDAR lane detection
under various environments in the K-Lane dataset.

III. METHOD

In this section, we describe the proposed network in
details. Firstly, we provide an overview of the structure of
the proposed network. Then, we explain in details about the
components of the network: the feature extractor, the row-
wise detection head, and the refinement head. Finally, we
express the loss function that is used to train the network.

A. Two-stage Row-wise Lane Detection Network

As shown in Fig. 1, we design the proposed lane detection
network in two-stage detection network with a row-wise
approach. First, a feature extractor backbone takes the raw
point cloud data as an input. The feature extractor then
encodes the raw point cloud into a pseudo bird-eye-view
(BEV) image, which is further processed by a global feature
correlator to produce the output feature map. This output
feature map is utilized by the first stage row-wise detection
head to predict two values: row-wise existence and row-wise
probability. Through the row-wise existence and location
probability predictions, we can obtain the first-stage lane
detection proposals.



Fig. 1. Overall structure of the proposed network.

To further improve the lane detection accuracy, we use a
second-stage refinement head. The refinement head collects
features around the location of the lane proposals, which
we term as lane tokens. The lane tokens are then processed
through the attention-based mechanism, resulting in new lane
tokens with correlation information. The new lane token
features are used to replace the original lane features in the
output feature map of the first stage network, resulting in a
refined feature map. Finally, the refinement head produce
new and more accurate lane detection proposals through
another row-wise existence and probability predictions from
the refined feature map.

B. Feature Extractor

The feature extractor is responsible for encoding the point
cloud raw data into an output feature map that is used
by the detection head to make the final predictions. It is
composed of two parts: the BEV encoder and the global
feature correlator (GFC) backbone. Given a point cloud P =
{p1,p2, ...,pn}, where pi ∈R(3+C) is a point in the 3D space
with C additional features such as intensity and reflectivity,
the feature extractor first encode the raw point cloud data into
a pseudo BEV image of size CBEV ×HBEV ×WBEV , where
CBEV is the number of feature channels, HBEV is the number
of rows, and WBEV is the number of columns.

After obtaining the pseudo BEV image, the backbone then
learn important features through global feature correlator.
This results in the final output feature map of size Chead ×
HBEV ×WBEV . We utilize the same feature extractor as seen
in previous state-of-the-art network [9] as our focus in this
work is on the detection head with the two-stage row-wise
formulation.

C. Row-wise Detection Head

The row-wise detection head uses the final output feature
map as an input and produce two predictions: the row-wise
lane existence and the row-wise lane location probability. To
do so, we leverage the fact that lane lines from a LiDAR
scan have almost no shape distortion along the BEV map

rows, thus, it is suitable to utilize shared-MLPs. As shown
in Fig. 2, the MLPs are shared along the rows of the feature
map, that is, each row in the feature map is considered as
an individual feature vector (colorized as purple in Fig. 2)
to be processed by the same MLPs.

We use two distinct shared-MLPs, one for predicting
whether a lane line class exists on the road (row-wise lane
existence), the other for predicting the horizontal (column-
wise) location on which the lane line resides on (row-wise
location probability) as shown in Fig. 2. Specifically, the
row-wise existence MLPs output is an Ncls×HBEV ×2 logits
feature map, where Ncls is the number of lane line classes,
and 2 is the number of parameters for predicting the proba-
bility of existence (i.e., exist or not), with column 0 represent
not-exist flag, while column 1 represent exist flag. The row-
wise probability MLPs output is an Ncls×HBEV ×WBEV logits
feature map. To obtain the row-wise existence and location
probability, we apply softmax function along the column to
the logits of feature maps. The existence and the location
of lane line of class c on row h is determined through the
argmax function along the rows. Note that while each rows

Fig. 2. Detailed process of row-wise detection head.



contains lane location probability, only rows with a positive
existence prediction are considered as the first-stage lane
proposals.

D. Refinement with Lane Correlation

After obtaining the first lane proposals from the detection
head, the network further improve its predictions through
the refinement head as shown in Fig. 1 (D). The refinement
head first collects features from the final output feature map
based on the location of lane proposals, resulting in a set of
lane tokens. However, a lane class that does not have enough
information may adversely affect the correlation operation,
so we only extract features of lane classes that have more
than a certain amount of positive existence along the entire
rows.

To be specific, suppose that the lane existence predictions
are P̂ext ∈RNcls×HBEV×2 as described in the previous subsec-
tion. We collect features of lane class c iff.,

1
HBEV

HBEV

∑
h

argmaxw(p̂ext
c,h)> Text , (1)

i.e., we only consider the lane classes that exists on more
than Text ·HBEV number of rows.

The lane tokens have a size of Nlanes ×HBEV × (Chead ×
Wthick), where Nlanes is the number of extracted lanes fol-
lowing the requirement stated in equation 1, and Wthick is
the thickness of the lane that we extract when collecting the
tokens. For an example, the thickness of three will result
in a token that is constructed from the feature vector at the
same coordinate as the lane proposal, and two other feature
vectors from the neighboring columns.

The collected lane tokens are then processed by a trans-
former encoder block [17] to produce refined feature vec-
tors. Intuitively, the transformer encoder block tries to find
important features in the lane tokens while considering
the interaction between feature vectors of different lanes
via correlation (i.e., dot product of query and key). Such
mechanism may be advantageous considering that most lane
lines are constructed with a certain degree of regularity in
terms of shape and distance between each other.

The lane tokens are then returned back to their original co-
ordinates on the output feature map to create a refined feature
map. This refined feature map is then used to predict the
final row-wise existence and row-wise probability through
two distinct shared-MLPs as in the first stage prediction. As
such, the lanes, which are difficult to be detected in the first
proposal, can be detected through interaction with other lane
lines. This hypothesis is backed by both quantitative and
qualitative enhancement, especially for hard cases such as
severe occlusions.

E. Loss Function

The proposed row-wise detection network is supervised
through two loss functions: lane existence loss Lext and lane
location probability loss Lloc. As we mentioned earlier, since
the row-wise detection method is formulated as predicting
the row-wise probability, both losses are constructed as sum

of row-wise cross-entropy loss. To be specific, the Lext
penalizes the network when it miss-classifies the existence of
a certain lane class on the scene. Let Pext ∈RNcls×HBEV×2 be
the lane existence ground truth where Ncls is the number of
lane classes, HBEV is the number of rows, and pext

c,h ∈R2 is a
one-hot-encoded vector that indicates the existence of a lane
of class c on row h. That is, pext

c,h,1 = 1 if there exists a lane
line of class c on row h, and pext

c,h,0 = 1 if the opposite is true.
Given the lane existence predictions P̂ext ∈RNcls×HBEV×2, we
define the lane existence loss as,

Lext =− 1
Ncls ·HBEV

Ncls

∑
c

HBEV

∑
h

2

∑
w

pext
c,h,w · log(p̂ext

c,h,i). (2)

For the lane location loss, suppose that Ploc ∈
RNcls×HBEV×WBEV is the lane location probability ground truth,
where WBEV is the number of columns. ploc

c,h is a one-hot
encoded vector that indicates the location of a lane of class c
on row h, that is, ploc

c,h,w = 1 if there exists a lane line of class c
on row h and column w, and ploc

c,h,w = 0 if the opposite is true.

Given the lane location probability P̂loc ∈ RNcls×HBEV×WBEV ,
we define the lane location probability loss as,

Lloc =− 1

∑
Ncls
c ∑

HBEV
h pext

c,h,1

Ncls

∑
c

HBEV

∑
h

WBEV

∑
w

ploc
c,h,w · log(p̂loc

c,h,w) · pext
c,h,1.

(3)
Unlike existence loss, the location loss is applied only to

lane location probabilities for which its corresponding exis-
tence prediction is a positive flag. This is because predicting
the lane locations of non-existent lanes may have adverse
effects to the training of the network.

Both existence and location loss are applied to both pre-
diction results of the first and second stage heads. Since both
existence and location loss are normalized to each row (i.e.,
divided with Ncls ·HBEV and ∑

Ncls
c ∑

HBEV
h pext

c,h,1, respectively),
the total loss function is the summation of both lane existence
loss and lane location probability loss,

Ltotal = (Lext +Lloc)1st stage +(Lext +Lloc)2ndstage. (4)

IV. EXPERIMENTS

In this section, we provide the implementation details that
are required to reproduce our results. Then we show and
discuss our experimental results on the K-Lane dataset [9].

A. Dataset & Metric

We utilize the K-Lane dataset [9] throughout the ex-
periments. The dataset contains a collection of up to six
labelled lane lines on over 15k frames of LiDAR point
clouds, where the labels are provided in the form of BEV
images. Additionally, K-Lane includes carefully calibrated
front camera images, which simplifies the visualization of
LiDAR lane detection network output results as shown in
Fig. 3.

For a fair comparison, we validate the performance with
the F1-score, a harmonic mean of the precision and recall,
following the previous work. However, we measure the



Fig. 3. Qualitative comparison of segmentation-based (SOTA prior work) and row-wise-based (ours): We show lane detection results in a total of five
different conditions, i.e. urban, highway, curve, merging, and occlusion. We project the lane proposals onto the RGB camera image, where the BEV label
is shown on the top-left corner, and the BEV prediction is shown on the top-right corner. We also visualize the lane proposals on the point cloud under
its corresponding RGB camera image.

TABLE I
COMPARISON OF F1-SCORE ON VARIOUS ROAD CONDITIONS & GFLOPS

Model Overall Daylight Night Urban Highway Curve Merging Num. of Occluded Lines GFLOPs

0 1 2 3 4-6

LLDN-GFC [9] 82.12 82.22 82.00 81.75 82.55 78.05 81.08 82.97 81.43 81.28 78.67 75.92 558.0
Ours (1-stage) 82.37 82.04 82.75 81.14 83.85 76.49 79.78 83.33 81.52 81.57 77.91 76.36 385.1
Ours (2-stage) 82.74 82.58 82.92 81.64 84.05 76.16 79.92 83.44 81.87 82.00 80.37 79.16 387.5



absolute computation of the network through floating point
operations (FLOPs) rather than the inference speed as the
speed measurements can vary depending on the quality of
the hardware. Thus, in the experiments, we assess precision,
recall, and computational complexity, all of which are crucial
for lane detection task.

B. Implementation Details

We implement our experiments using PyTorch [18] on an
Ubuntu 18.04 machine with RTX3090 GPUs. Unless stated
otherwise, we set the maximum epochs to be 20 with a batch
size of 4. We use Adam [19] as the optimizer, with a learning
rate of 10−4. All of the experiments are conducted on the
K-Lane dataset [9].

C. Results on the K-Lane Dataset

Fig. 3 and Table I respectively show the qualitative and the
quantitative results of our proposed network compared to the
existing baseline, LiDAR lane detection network with global
feature correlator (LLDN-GFC) based on segmentation ap-
proach [9]. The row-wise detection network outperforms the
existing segmentation-based network in terms of F1-score
by +0.62 points. Moreover, the row-wise detection network
achieves state-of-the-art performance with less computational
complexity, where the GFLOPs is about 30% less when
being compared to the existing baseline. Though it is obvious
that the overall performance of the model can be dependent
on the hyper-parameter values as shown in Table II, we
note that the proposed network outperforms segmentation-
based for most road conditions. In particular, when more
than four lanes are occluded, the proposed network shows
a significant improvement of 3.24% over the existing SOTA
neural network. To the best of our knowledge, there is no
publicly available LiDAR lane detection network other than
the LLDN-GFC at the time of submission.

The superior performances of the proposed two-stage
LiDAR lane detection network with row-wise approach may
originate from three aspects. First, the row-wise approach
allows the detection head to directly produce the prediction

TABLE II
COMPARISON OF PERFORMANCE FOR VARIOUS HYPER-PARAMETERS

Backbone 2-Stage Head Overall GFLOPs

Depth Text Depth Wthick F1-score

1 - - - 79.52 379.64
3 - - - 82.37 385.08
5 - - - 82.25 390.52

2 0.3 1 5 82.57 384.76
3 0.3 1 5 82.74 387.48
5 0.3 1 5 82.57 392.92

3 0.3 3 5 82.39 387.70
3 0.3 5 5 82.63 387.90

3 0.5 1 5 82.49 387.40
3 0.7 1 5 82.54 387.24

3 0.3 1 3 82.71 387.44
3 0.3 1 7 82.52 387.54

Fig. 4. Qualitative comparison of 1st -stage and 2nd -stage lane proposals
from the proposed network. The 1st -stage lane proposals is the intermediate
output of the proposed network which is the input of 2nd -stage detection
head (i.e., Refinement head). We project the lane proposals onto the RGB
camera image, where the BEV label is shown on the top-left corner, and the
BEV prediction is shown on the top-right corner. We also visualize the lane
proposals on the point cloud under its corresponding RGB camera image.

values for all columns in the same row through the highly-
optimized MLP operation. This is in contrast with the
segmentation-based approach, where the prediction values
are obtained by applying 1×1 convolution to each column,
which may result in a more inefficient operation. Second, by
applying the MLP per row, the detection head of the network
may directly learn the correlation between all features on the
same row in the feature map. On the contrary, the each of
the segmentation-based predictions is produced only from
that specific grid in the feature map. Third, the second-stage
refinement through lane correlation enables the network to
learn important connection between lane features globally,
thus helping in the case of severe lane occlusions. As
shown in Fig. 4, the second-stage proposals, which reflects
the correlation of the first-stage proposals as lane tokens,
robustly detect the lanes (colorized in purple) which were not
detected in the 1st-stage proposals due to vehicle occlusions.

Quantitatively, as shown in Table I, for the single-stage
neural network, we observe only a 0.44% improvement over
prior SOTA network in the roads where more than 4 to 6
lanes are occluded. On the other hand, for the same occlusion
level, the proposed two-stage network improves the SOTA by
3.24%.



D. Experiments on Design Choices

There are several hyperparameter choices that affect the
final performance of the proposed network. On the first-
stage network, the depth of the transformer-based global
feature correlator (GFC-T) [9], which partly reflect the model
capacity, should be optimal w.r.t. the complexity of the
problem and the number of samples in the dataset. On
the second-stage network, there are three hyperparameters:
the lane existence threshold (Text ), network depth, and the
thickness of extracted lanes when collecting the lane tokens
(Wthick).

To study the effect of each hyperparameter, we conduct
several experiments with different hyperparameter values. As
seen in Table II, all previously mentioned hyperparameters
are affecting the network performance.

From the experimental results, we find that setting the
backbone depth to be three yields the best performance in
terms of F1-score. Interestingly, the optimal depth for the
second stage refinement head is found to be one, where
deeper network lead to lower F1-score. In addition, we
observe that setting Wthick to be five gives the optimal
performance compared to other values.

We also perform ablation study on the effect of the
second-stage network. From Table I, we can see that the
proposed two-stage row-wise detection network is especially
robust on the occlusion cases, which empirically support our
explanation on Section 3.

V. CONCLUSIONS

In this work, we have proposed a novel two-stage LiDAR
lane detection network with row-wise detection approach.
The first stage network is responsible for predicting lane
proposals, while the second stage network refines the first
stage feature map through attention-based mechanism be-
tween lane tokens, before predicting the refined lane propos-
als. From experimental results on the K-Lane dataset, the
proposed network advances the state-of-the-art performance
with an overall F1-score of 82.74% by 0.62% while reducing
the GFLOPs by about 30%. In particular, the proposed
network greatly improves the lane detection performance
for severe occlusion cases. Therefore, the proposed network
enables a robust lane detection required for safe autonomous
driving in the congested traffics where performance deterio-
ration is previously significant.
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