
Multiview Attention for 3D Object Detection in
Lidar Point Cloud

Kevin Tirta Wijaya*

The Robotics Program
KAIST

Daejeon, Republic of Korea
kevin.tirta@kaist.ac.kr

Donghee Paek*

The Cho Chun Shik
Graduate School of Green Transportation

KAIST
Daejeon, Republic of Korea

donghee.paek@kaist.ac.kr

Seung-Hyun Kong †

The Cho Chun Shik
Graduate School of Green Transportation

KAIST
Daejeon, Republic of Korea

skong@kaist.ac.kr

Abstract—Prior works in voxel-based Lidar 3D object detec-
tion have demonstrated promising results in detecting a variety
of road objects such as cars, pedestrians, and cyclists. However,
these works generally reduce the feature space from a 3D volume
into a 2D bird eye view (BEV) map before generating object
proposals to speed up the inference runtime. As a result, the
resolution of information in the z-axis is reduced significantly.
In this work, we hypothesize that augmenting the BEV features
with features obtained from a front view (FV) map may provide
a way for the network to partially recover the high-resolution
z-axis information. The augmentation allows object proposals
to be inferred in the BEV, maintaining the fast runtime, and
simultaneously improving the 3D detection performance. To
support our hypothesis, we design a multi-view attention module
that augments the BEV features with the FV features and conduct
extensive experiments on the widely used KITTI dataset. Based
on the experimental results, our method successfully improves
various existing voxel-based 3D object detection networks by a
significant margin.

Index Terms—3D object detection, Lidar point cloud, multi-
view attention

I. INTRODUCTION

Object detection is one of the most researched topics in
the field of computer vision. Various 2D object detection
networks with remarkable performance have been introduced,
owing to the advancements in deep learning, convolutional
neural networks (CNN), and transformers. However, 2D object
detection alone is often not sufficient for a machine, such as an
autonomous car, to operate in a real-world scenario. Objects in
the real world exist in the three-dimensional space, therefore,
3D information is required to plan safe maneuvers. Hence, a
robust 3D object detection technique is a crucial function for
an autonomous car.

3D object detection is often performed in a point cloud
obtained from a Lidar sensor. Recent deep learning-based
3D object detection networks for Lidar point cloud [13]–[17]
often consist of a preprocessing module, a feature extraction
backbone, a detection head, and in the case of two-stage
detectors, an additional refinement head.

* co-authors, † corresponding author
This work was supported by the National Research Foundation
of Korea (NRF) grant funded by the Korean government (MSIT)
(2021R1A2C300837011)

As Lidar measurements are often stored in an unordered list,
the preprocessing module needs to introduce spatial structure
to the data so that convolution operations can be applied. The
most commonly used preprocessing method is voxelization,
where the 3D point cloud space is discretized into non-
overlapping cuboids of identical sizes. The attributes of points
that lie in the same voxel are used as the feature vectors
of the voxel. A series of 3D convolutions are then applied
to the voxels, decreasing the spatial dimension of the voxel
volume from RD×W×H to RD′×W ′×1 where D, W, and H are
the voxel volume’s depth (x-axis), width (y-axis), and height
(z-axis), respectively. This feature extraction process can be
seen as a dimensionality reduction process from a 3D feature
volume to a 2D bird eye view (BEV) feature map.

There are at least two compelling reasons to choose a
2D BEV feature map as the final feature map. Firstly, ob-
ject proposals are predicted by applying a shared multilayer
perceptron (shared-MLP) to every feature vector in the final
feature space, either a 2D feature map or a 3D feature volume.
Consequently, performing such a process in the 3D space
requires a lot of computations, resulting in prohibitively slow
inferences. Secondly, the 2D BEV feature map is an excellent
choice of representation since objects of interest on the road
(i.e., Cars, Pedestrians, and Cyclists) do not overlap in the
BEV. This is not the case for the front-view map, where objects
may fall in a line such that farther objects are occluded by
nearer objects.

Although the 2D BEV feature map has desirable properties
in terms of inference speed and objects separations, the reso-
lution of information in the z-axis is significantly reduced. We
hypothesize that the accuracy of 3D bounding box proposals
generated from features with low-resolution z-axis information
should be lower compared to when high-resolution z-axis
information is available.

In order to provide high-resolution information z-axis in-
formation to the detection head while maintaining the 2D
BEV feature map shape, we propose a new front-view (FV) to
BEV feature augmentation via the multiview attention (MVA)
module. The MVA module consists of learnable functions that
robustly augment the BEV feature vectors with the FV feature
vectors that have high-resolution z-axis information at similar



locations. The augmented BEV features enable the detection
head to access high-resolution z-axis information, resulting
in the improvement of the 3D detection performance of the
network.

Our contributions can be summarized as follows:
• We propose a new framework for 3D object detection

where the BEV feature map is augmented with its FV
counterpart, thus enriching the BEV features with high-
resolution z-axis information.

• We introduce a new module termed multiview attention
(MVA) to augment BEV features with FV features. The
MVA module is designed to be compatible with any
3D object detection networks that use the popular 3D
voxel volume to 2D BEV feature map feature extraction
process. Therefore, any system that uses such networks
can experience improvement in its 3D detection per-
formance with only small updates in its code, limiting
the possibility of bug introduction on already-deployed
systems.

• We conduct evaluations on four popular existing 3D
object detection networks augmented with our MVA
modules on the widely used KITTI dataset. Evaluation
results show that our module successfully improves those
networks. In addition, we perform an ablation study
to figure out the effects of different architectures and
hyperparameters in the MVA module.

The remaining of this paper is structured as follows: we
discuss relevant prior works in Section II, introduce the
structure of 3D object detection with our MVA module in
Section III, discuss our experimental results in Section IV,
and conclude the paper in Section V.

II. RELATED WORKS

Various 3D object detection networks have been introduced
in recent years. In general, the existing networks can be
classified into three different categories based on their feature
extraction approach, i.e., voxel-based, point-based, or hybrid
approach.

A. Point-based

In the point-based approaches, the feature extractor of the
network is conditioned to learn directly from a set of raw
points without discretizing the point cloud as in the voxel-
based approach. To achieve this objective, networks such as
Point-RCNN [2] utilizes PointNet++ [3] to learn the point-
wise features. One advantage of using point-based feature
extractors is that they preserve high-resolution spatial structure
information of the points as there is no discretization process.
However, point-based approaches often suffer from expensive
computations as the number of points in a point cloud is often
enormous. Therefore, point-based methods are often slower
than their voxel-based counterparts.

B. Voxel-based

In the voxel-based approaches, points in a point cloud
are first discretized into non-overlapping cuboids of identical

sizes. The feature extractor is then conditioned to learn features
for each voxel according to the points that lie inside. The
voxel-based approach was first popularized by VoxelNet [4],
where the features of each voxel are learned by a voxel feature
encoder module. Meanwhile, SECOND [16] introduced the
use of sparse 3D convolution to replace the computationally
expensive 3D convolution operations, leading to a significant
improvement in the inference speed.

Recent voxel-based methods try to improve the training
scheme or the second stage network. For example, SE-SSD
[5] introduced the teacher-student learning scheme to train the
networks with soft targets, while Voxel-RCNN [13] proposed
a fast query technique to obtain voxel features to be used in
the second stage refinement.

C. Hybrid-based

Hybrid approaches use both the point-based and voxel-
based features to create rich feature vectors. PV-RCNN [14]
first extract the voxel features and BEV features by utilizing
the sparse 3D convolutions and 2D feature pyramid networks
(FPN) [6], respectively. In the second stage, the network
queries raw point features, voxel features, and BEV features
of the object proposals to refine the bounding box predictions.
Similarly, PVGNet [7] stacks together point-based features
from the raw points, voxel-based features from the voxel
feature volume, and grid features from the BEV feature map
to create enriched feature vectors. BtcDet [17] on the other
hand augments the raw point features and voxel features with
occupancy features predicted by an auxiliary network.

III. METHODOLOGY

In this section, the problem of 3D object detection in a
point cloud will first be defined. Following that, we explain
the common structure of voxel-based 3D object detection
networks that we used in our experiments. Last, we describe
in detail how our MSA module works.

A. Problem Definition

A Lidar point cloud P is defined as a set of Np points,
P = {p1, ...,pNp}. A point pi can be described as a feature
vector pi = [xi, yi, zi,f

raw
i ] ∈ R3+Craw

with (xi, yi, zi) as
the 3D coordinates of the point and fraw

i is an additional
feature vector of Craw dimension that describes the point, such
as intensity, reflectivity, or ring information. An object m in a
point cloud can be described by its class sm and bounding
box bm. In most dataset, bm is constructed by using the
center coordinates of the object (xm, ym, zm), its dimension
(dm, wm, hm), and its yaw angle θm.

Using previously described notations, the basic objective
of the 3D object detection with a deep neural network is
to find the best parameters of a learnable function Φ that is
conditioned on the point cloud P to predict a set of classes S
and bounding boxes B of objects that are present in the scene.
The optimization objective becomes,

ΘMLE = argmaxΘ(P(S,B|P )), (1)



Fig. 1. An overview of the general voxel-based 3D object detection networks with our proposed MVA module. We modify the common sequence of sparse
3D convolutions and 2D convolutions into a two-branch sparse 3D convolutions, 2D convolutions (FPN), and an MVA module.

and during inference, the learnable function Φ will produce
outputs,

Φ(P ) = {(ŝ1, b̂1), ..., (ŝMP , b̂MP )}. (2)

Note that the number of predicted objects Mp is not necessar-
ily equal to the number of actual objects (ground truths) M
that are present in the scene.

B. Voxel-based Framework for 3D Object Detection

In this work, we design our MVA module to be com-
patible with any 3D object detection network that uses the
popular voxel-based feature extractor. Figure 1 shows the
overall structure of a general 3D object detection network
with the addition of our MVA module. Traditional voxel-
based 3D object detection networks generally start with a
voxelization module, followed by 3D sparse convolutions and
2D convolutions, and finally a detection head that produces
object proposals. In the case of two-stage detection network,
object proposals from the first stage are used by the refinement
head to refine the bounding box proposals.

Voxelization As shown in Figure 1, a 3D object detection
network that uses voxel-based framework will first discretize
the point cloud P into non-overlapping voxels of equal sizes
which will results in a set of non-empty voxels V raw =
{vraw

1 , ...,vraw
Nv |vraw

i ∈ RK×(3+Craw)}, where Nv is the
number of non-empty voxels and K is the predetermined
number of points in a voxel. As the original number of points
in a voxel, K0, varies, we apply zero-padding to create ”fake”
points if K0 < K and random sampling if K0 > K. All
non-zero points that lie in the voxel vraw

i will be averaged
to create a single feature vector so that the voxels become
V mean = {fmean

1 , ...,fmean
Nv |fmean

i ∈ R3+Craw}.
The non-zero averaging is used to reduce the effect of zero-

padding towards feature vectors in the subsequent layers. If the

voxels contain feature vectors from “fake” points, then an all-
zero feature vector from a “fake” point may be transformed
into a feature vector with non-zero values by any affine
transformation that we apply in subsequent layers. Such non-
zero feature vectors coming from non-existent points may be
considered as noises to our network. Performing non-zero av-
eraging guarantees that the mean feature vectors always come
from existing points. We can maintain the representativeness
of the mean feature vectors by setting the voxel size small
enough such that there are only small variances in the raw
feature vectors of the points inside each voxel.

Two-way Sparse 3D Backbone Convolution in the 3D
space is computationally expensive, especially when the op-
eration is performed on a large volume. To speed up the
process of 3D convolution, we leverage the fact that point
cloud data are often sparse and apply the widely used sparse
and submanifold 3D convolutions [11] that operate only on
the non-zero elements of the feature volume.

We define the spatial shape of a voxel volume V as the
number of voxels in each axis of the 3D coordinates that are
required to cover the region of interest in the point cloud. For
input voxels V mean with a spatial shape of Din×W in×Hin,
the sparse 3D convolutional backbone will produce two 2D
feature maps, FV and BEV. In our experiments, the default
spatial shape of the FV is 1 × W in

8 × Hin

2 , while the default
spatial shape of the BEV is Din

8 × W in

8 × 1. To create the
two maps, we apply two branches of sparse 3D convolutional
blocks, as shown in Figure 1. The upper branch is responsible
for the FV feature map, while the lower branch is responsible
for the BEV feature map.

The FV feature map has high-resolution in the z-axis, the
BEV feature map has high-resolution in the x-axis, and both
feature maps have the same dimension in the y-axis. Therefore,
combining FV features to the BEV features based on their



Fig. 2. MVA with Dot Product Attention

Fig. 3. MVA with Affine Transformation

location on the y-axis should yield meaningful features that
contain high-resolution z-axis information while still maintain-
ing the BEV shape. The combination procedure is explained
in detail in the Multiview Attention Module subsection.

2D Convolutional Backbone, Detection Head, and Re-
finement Head After obtaining both FV feature map and BEV
feature map via two-way sparse 3D convolutions, the BEV
feature map is further processed with a 2D feature pyramid
network (FPN) [6] as in recent 3D object detection networks
[13]–[16]. The 2D FPN enables the network to capture global
structural relationships between the BEV features. The FPN
output of BEV feature map is subsequently augmented with
the FV feature map by leveraging our proposed MVA module.
The details of this combination process are explained in
the next subsection. Given the augmented BEV feature map
from the MVA output, the detection head performs 1 × 1
convolutions on each feature vector fBEV

i on the map to
predict its class, si and bounding box proposal bi. In the case
of two stage detectors, the bounding box proposals are further
refined by the refinement head by leveraging features from
different sources such as raw points, voxels, and BEV map.

C. Multiview Attention Module

An object in the 3D space should occupy the same y-axis
coordinate in both FV and BEV. In other words, FV and BEV
features that lie on the same y-axis coordinate should represent
the same objects and environments. We leverage this fact to
augment the BEV features with the FV features. Given an
FV feature map fFV of size Hout × W out × Cout and a

BEV feature map fBEV of size Dout × W out × Cout, the
MSA module takes the features residing on the i-th index of
the y-axis, fFV

i ∈ RHout×Cout

and fBEV
i ∈ RDout×Cout

,
and combine the two features together to make the augmented
BEV features fBEV ′

i ∈ RDout×Cout

. We provide two ways of
combining the features, via dot-product attention mechanism
or via a single affine transform block applied to the FV
features.

MVA with Dot Product Attention The process of con-
structing the augmented BEV features fBEV ′

i , shown in
Figure 2, can be described as transforming a sequence of
feature vectors fFV

i of length Hout into a new sequence fFV ′

i

of length Dout. The transformed sequence is combined with
another sequence fBEV

i of length Dout via an aggregating
function such as a summation. For the dot-product attention,
we design the dimension size of fFV

i channels to be the same
as fBEV

i channels, CBEV .
The dot product attention mechanism has been widely used

for sequence-to-sequence transformation. In recent years, the
multihead variant of the dot product attention mechanism was
popularized by [8] in the natural language processing domain
and [9] in the computer vision domain. In this work, we utilize
the multihead attention mechanism, defined as,

MHA(Q,K, V ) = Concat(h1, ..., hNh)W out, (3)

where,

hk = Att(fBEV
i WQ

k ,fFV
i WK

k ,fFV
i WV

k ), (4)

Att(Q,K, V ) = softmax(
QKT

√
dk

)V, (5)

dk = CBEV /Nh, and Ws are learnable weight matrices.
Intuitively, the attention mechanism figures out the impor-

tance of each element in fFV
i with regard to fBEV

i in the
form of a weight matrix via softmax and scaled-correlation
of the two. The weight matrix is then used to construct a
new sequence fFV ′

i from fFV
i values but in the shape of

fBEV
i . Combining the sequence of feature vectors fFV ′

i with
fBEV
i via an aggregation function, in our case a summation,

will result in an augmented BEV feature vectors fBEV ′

i . The
augmented BEV feature map provides a way for the detection
head to access high-resolution z-axis information that is not
available with only a BEV feature map.

MVA with Affine Transform The dot-product attention
mechanism requires at least three different affine transform
blocks per head and requires large memory space as ob-
served in many transformer-based architectures. We provide
an alternative solution where we only use a single affine
transform block without dot product operation between the
sequence of feature vectors, as shown in Figure 3. In this case,
fFV
i is directly transformed into fFV ′

i , which has the same
shape as fBEV

i , by a single layer of affine transformation.
This mechanism can be seen as a location-based attention
introduced in [18]. This alternative is more efficient compared



TABLE I
EVALUATION RESULTS OF VARIOUS 3D OBJECT DETECTION NETWORKS WITH AND WITHOUT THE PROPOSED MVA MODULE ON THE KITTI val SET. THE

VALUES ARE FOR %AP WITH 11 SAMPLING POINTS. FOR NETWORKS WITH MVA, THE SECOND ROW INDICATES THE PERFORMANCE DIFFERENCE
COMPARED TO THE ORIGINAL NETWORK.

Car Pedestrian Cyclist MeanEasy Moderate Hard Easy Moderate Hard Easy Moderate Hard
Voxel-RCNN [13] 89.21 83.41 78.60 67.19 60.65 55.16 85.73 72.21 68.46 73.40

Voxel-RCNN with MVA 89.77
+0.56

84.06
+0.65

78.99
+0.39

67.02
-0.17

61.25
+0.60

55.41
+0.25

86.28
+0.55

72.42
+0.21

68.51
+0.05

73.74
+0.34

PV-RCNN [14] 89.33 83.61 78.71 63.10 54.82 51.77 86.06 69.48 64.54 71.27

PV-RCNN with MVA 89.17
-0.16

84.58
+0.97

78.66
-0.05

65.44
+2.34

57.97
+3.15

53.80
+2.03

86.36
+0.30

72.68
+3.20

69.25
+4.71

73.10
+1.83

PV-RCNN++ [15] 88.88 79.04 78.26 64.00 59.40 54.49 86.76 66.94 65.69 71.50

PV-RCNN++ with MVA 89.06
+0.18

83.56
+4.52

78.35
+0.09

65.14
+1.14

61.60
+2.20

55.96
+1.47

86.84
+0.08

67.31
+0.37

65.50
-0.19

72.59
+1.09

SECOND [16] 88.61 78.62 77.21 56.54 52.98 47.73 80.58 67.13 63.10 68.06

SECOND with MVA 88.93
+0.32

79.11
+0.49

77.88
+0.67

61.75
5.21

55.92
+2.94

49.99
+2.26

85.57
+4.99

70.44
+3.31

64.86
+1.76

70.49
+2.43

TABLE II
MEAN OF THE %AP DIFFERENCE BETWEEN NETWORKS WITH MVA AND THEIR ORIGINAL NETWORK

Car Pedestrian Cyclist
Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard
+0.23 +1.65 +0.27 +2.13 +2.22 +1.50 +1.48 +1.77 +1.58

+0.72 +1.95 +1.61

to the dot-product attention mechanism, however it has lower
model capacity. We show the effects between utilizing dot-
product attention and affine transform in the ablation study.

IV. EXPERIMENTAL SETUPS AND RESULTS

In this section, we will describe the dataset that we used
to conduct our experiments and list all implementation details
that are needed to reproduce the experimental results. We then
show and discuss our evaluation results on the validation set.

A. Dataset

In this work, we utilize the widely used KITTI dataset [1]
for 3D object detection with Lidar point cloud. The KITTI
dataset is one of the earliest and most popular datasets for
3D object detection in Lidar point cloud. The dataset contains
7,481 Lidar frames for training and 7,518 Lidar frames for
testing. There are three major classes in the dataset: Car,
Pedestrian, and Cyclist. For every object sample of each class,
we can assign a difficulty level, i.e. easy, moderate, or hard,
depending on the level of occlusions of said object.

As the annotation for test set is not publicly available, we
split the training data into train split with 3,712 frames and
val split with 3,769 frames. We follow the commonly used
protocol for splitting the KITTI training data [10] such that the
frames in the train split and val split originate from different
sequences. We perform extensive evaluations on the val set,
not the test set, as per KITTI’s official rules for works that are
a modification of existing techniques.

B. Implementation Details

We set the number of epochs as 80, batch size as 4, and
use Adam [12] as the optimizer. The one cycle scheduler is

used to control the learning rate, where the maximum learning
rate, 0.01, is set to be achieved at about halfway through the
training. For all networks, we define the voxel size as 5cm×
5cm×10cm for the x, y, and z axis, respectively, and limit the
detection range to be 0 ∼ 70m for the x-axis, −40 ∼ 40m for
the y-axis, and −3 ∼ 1m for the z-axis relative to the position
of the Lidar sensor on the ego car.

To make fair comparisons between networks with MVA and
their original counterparts, we retrain the original networks
using the publicly available code with the same hyperparame-
ters as the ones with MVA modification. We also refer to the
original publication of each network for the loss functions.

C. Main Results

Table I shows the evaluation results of various voxel-
based 3D object detection networks with and without the
proposed MVA module on the val set of the KITTI dataset.
We choose to use the dot-product MVA module with 8 heads
following the ablation results, which is explained in details
in the next subsection. As shown on the table, our MVA
module improves the 3D detection performance of voxel-based
3D object detection networks in general. More specifically,
our module improve the detection performance of all four
networks by 0.72% for car class, 1.95% for pedestrian class,
and 1.61% for cyclist class, as shown in Table II.

It is interesting to note that the improvements in both pedes-
trian and cyclist classes are higher compared to the improve-
ment in the car class. This phenomena can be explained by
the bounding box dimensions of the objects on the road. Cars
in general have similar shapes and sizes as car manufacturers
have to follow existing regulations, therefore, their bounding
box dimensions are similar for all samples in the dataset. On



TABLE III
COMPARISON BETWEEN DOT-PRODUCT AND AFFINE TRANSFORMATION MVA MODULES WITH VOXEL-RCNN-MVA

Car Pedestrian Cyclist Overall Inference
Time (ms)Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard

Dot Product 89.77 84.06 78.99 67.02 61.25 55.41 86.28 72.42 68.51 33.6
Affine Transform 89.60 83.97 78.88 65.56 60.05 54.97 84.95 72.25 68.22 30.4

TABLE IV
EFFECTS OF THE NUMBER OF HEADS IN THE DOT-PRODUCT MVA MODULE WITH VOXEL-RCNN-MVA

Number of
Heads

Car Pedestrian Cyclist Overall Inference
Time (ms)Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard

4 89.65 83.96 78.91 65.05 58.70 52.89 85.90 72.38 68.48 33.1
8 89.77 84.06 78.99 67.02 61.25 55.41 86.28 72.42 68.51 33.6
16 89.37 83.72 78.75 66.14 60.06 55.22 92.07 73.25 69.30 33.8

the contrary, pedestrians and cyclists have varying bounding
box dimensions, particularly in the z-axis due to the variance
in people’s heights. As such, the importance of obtaining high-
resolution information in the z-axis from the FV features is
far greater for predicting bounding boxes of pedestrians and
cyclists compared to bounding boxes of cars.

D. Ablation Study

We conduct ablations on the Voxel-RCNN network for two
aspects: the differences between the two MVA modules and the
number of heads in the dot-product MVA module. As shown
in Table III, the dot-product MVA module performs better
compared to the affine transformation MVA module in terms
of %AP. However, this method has a slower overall inference
time of about 3.2ms (10.5%). This phenomena is expected,
and has been previously explained in Subsection 3.C.

Another hyperparameters that can affect networks perfor-
mance is the number of heads in the dot-product MVA module.
Table IV shows the effects of number of heads on the network
performance. As expected, the processing time gets slower
when the number of heads is increased. However, higher
number of heads does not necessarily means the network has a
better performance in terms of %AP. We find that the network
performs optimally when we set the number of heads as 8.

Note that the original Voxel-RCNN has an overall inference
time of 29.6 ms, meaning that utilizing the two-way 3D sparse
convolutions and either the affine transform MVA or dot-
product MVA only adds 0.8 ms (2.7%) or 4 ms (13.5%) to
the overall inference time, respectively.

V. CONCLUSIONS

We present the Multiview Attention Module (MVA) for 3D
object detection that augments a bird-eye-view (BEV) feature
map with features from a front-view (FV) feature map. The
feature augmentation process enable the detection head to
obtain high-resolution information in the z-axis while still
allowing object predictions to be made on the BEV. As such,
we successfully maintain reasonable inference speed while
simultaneously improve the 3D detection performance. Based
on the experimental results on the KITTI val set, our MVA
module successfully improve the detection performance of

all four voxel-based networks that we evaluated, proving the
effectiveness and the adaptability of the MVA module.

REFERENCES

[1] A. Geiger, P. Lenz, R. Urtasun, ”Are we ready for autonomous driving?
the kitti vision benchmark suite,” 2012 IEEE conference on computer
vision and pattern recognition, 2012, pp. 3354-3361

[2] S. Shi, X. Wang, H. Li, ”Pointrcnn: 3d object proposal generation and
detection from point cloud,” Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, 2019, pp. 770-779

[3] C.R. Qi, L. Yi, H. Su, L.J. Guibas, ”PointNet++: Deep Hierarchical
Feature Learning on Point Sets in a Metric Space,” Advances in Neural
Information Processing Systems 30, 2017.

[4] Y. Zhou, O. Tuzel, ”Voxelnet: End-to-end learning for point cloud based
3d object detection,” Proceedings of the IEEE conference on computer
vision and pattern recognition, 2018, pp. 4490-4499

[5] W. Zheng, W. Tang, L. Jiang, C.W. Fu, ”SE-SSD: Self-Ensembling
Single-Stage Object Detector From Point Cloud,” Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2021, pp. 14494-14503

[6] T.Y. Lin, et al., ”Feature pyramid networks for object detection,”
Proceedings of the IEEE conference on computer vision and pattern
recognition, 2017, pp. 2117-2125

[7] Z. Miao, et al., ”PVGNet: A Bottom-Up One-Stage 3D Object Detector
With Integrated Multi-Level Features,” Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2021, pp.
3279-3288

[8] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, I. Polosukhin, ”Attention is all you need,” Advances in neural
information processing systems, 2017, pp. 5998-6008

[9] A. Dosovitskiy, et al, ”An image is worth 16x16 words: Transformers
for image recognition at scale,” arXiv preprint arXiv:2010.11929, 2020

[10] X. Chen, et al., ”3d object proposals for accurate object class detection,”
Advances in Neural Information Processing Systems, 2015, pp. 424-432

[11] B. Graham, L. van der Maaten, ”Submanifold sparse convolutional
networks,” arXiv preprint arXiv:1706.01307, 2017

[12] D. P. Kingma, J. Ba, ”Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014

[13] J. Deng, et al., ”Voxel R-CNN: Towards High Performance Voxel-based
3D Object Detection,” arXiv preprint arXiv:2012.15712 (2020)

[14] S. Shi et al., ”PV-RCNN: Point-Voxel Feature Set Abstraction for 3D
Object Detection,” 2020 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), 2020, pp. 10526-10535

[15] S. Shi, et al., ”PV-RCNN++: Point-Voxel Feature Set Abstraction With
Local Vector Representation for 3D Object Detection,” arXiv preprint
arXiv:2102.00463, 2021

[16] Y. Yan, Y. Mao, B. Li, ”Second: Sparsely embedded convolutional
detection,” Sensors 18, no. 10, 2018

[17] Q. Xu, Y. Zhong, U. Neumann, ”Behind the Curtain: Learning Occluded
Shapes for 3D Object Detection,” arXiv preprint arXiv:2112.02205, 2021

[18] M. T. Luong, H. Pham, C. D. Manning, ”Effective approaches
to attention-based neural machine translation,” arXiv preprint
arXiv:1508.04025, 2015


